Editorial Board

Instructions for Authors

Review Process





Sergiu SPINU

Department of Mechanical Engineering, University of Suceava, ROMANIA


Abstract.  A fast algorithm for elastic-plastic non-conforming contact simulation is presented in this paper. The plastic strain increment is determined using a universal integration algorithm for isotropic elastoplasticity proposed by Fotiu and Nemat-Nasser. Elastic-plastic normal contact problem is solved iteratively based on the relation between pressure distribution and plastic strain, until the latter converges. The contact between a rigid sphere and an elastic-plastic half-space is modeled using the newly proposed computer program. Numerical simulations predict that residual stresses decrease the peak intensity of the stresses induced by contact pressure, thus impeding further plastic flow. Computed pressure distributions appear flattened compared to elastic case, due to changes in both hardening state of the elastic-plastic softer material and contact conformity.


Keywords:  elastoplasticity, plastic strain increment, effective accumulated plastic strain, elastic-plastic contact




  1. Mayeur, C., 1995, Modélisation du contact rugueux élastoplastique, Ph.D. Thesis, INSA Lyon, France.

  2. Jacq, C., 2001, Limite d'endurance et durée de vie en fatigue de roulement du 32CrMoV13 nitruré en présence d'indentations, Ph.D. Thesis, INSA Lyon, France.

  3. Jacq, C., Nélias, D., Lormand, G., and Girodin, D., 2002, “Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code,” ASME J. Tribol., 124, pp. 653–667.

  4. Wang, F., and Keer, L. M., 2005, “Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior,” ASME J. Tribol., 127, pp. 494–502.

  5. Liu, S. B., Wang, Q., and Liu, G., 2000, “A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses,” Wear, 243 (1–2), pp. 101–111.

  6. Chiu, Y. P., 1977, “On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space,” ASME J. Appl. Mech., 44, pp. 587–590.

  7. Chiu, Y. P., 1978, “On the Stress Field and Surface Deformation in a Half Space with Cuboidal Zone in Which Initial Strains Are Uniform,” ASME J. Appl. Mech., 45, pp. 302–306.

  8. Liu, S. Wang, Q., 2005, “Elastic Fields due to Eigenstrains in a Half-Space,” ASME J. Appl. Mech., 72, pp. 871–878.

  9. Nélias, D., Boucly, V., and Brunet, M., 2006, “Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-in Model,” ASME J. Tribol., 128, pp. 236 - 244.

  10. Fotiu, P. A., and Nemat-Nasser, S., 1996, “A Universal Integration Algorithm for Rate-Dependant Elastoplasticity,” Comput. Struct., 59, pp. 1173–1184.

  11. Antaluca, E., 2005, Contribution a l'étude des contacts élasto-plastiques - effet d'un chargement normal et tangentiel, Ph.D. Thesis, INSA Lyon, France.

  12. Chen, W. W., Wang, Q. J., Wang, F., Keer, L. M., and Cao, J., 2008, “Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding,” ASME J. Tribol., 75, pp. 021021-1 - 021021-12.

  13. Cretu, S. Sp., Benchea, M., 2008, “An Improved Incremental Model to Analyse Elastic-Plastic Concentrated Contacts,” Proc. of 16th International Colloquium Tribology, Esslingen, Germany, pp.33 (on CD also).

  14. Benchea, M., Cretu, S. Sp., 2007,  “A Three Dimensional Elastic Plastic Analysis of Rolling Contacts,” ROTRIB-07, Nov. 6-9, Bucharest, Romania.

  15. Cretu, S., Hatmanu, V., 1985, “A Numerical Analysis of Permanent Deformation in Elastic-Plastic Line Contact,” Bul. Inst. Polit. Iasi, XXXI, (1-4), pp. 19-25.

  16. Polonsky, I. A., and Keer, L. M., 1999, A “Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques,” Wear, 231(2), pp. 206–219.

  17. Spinu, S., 2009, Contributions to the Solution of the Elastic-Plastic Normal Contact Problem, (in Romanian), PhD Thesis, University of Suceava, Romania.

  18. Boucly, V., Nélias, D., and Green, I., 2007, “Modeling of the Rolling and Sliding Contact Between Two Asperities,” ASME J. Tribol., 129, pp. 235 - 245.

  19. El Ghazal, H., 1999, Etude des proprietes microstructurales et mecaniques des aciers 16NiCrMo13 cemente et 32CrMoV13 nitrure - Application a la prevision de leur limite d’endurance en fatigue de roulement, Ph.D. Thesis, INSA Lyon, France.

  20. Benchea, M, and Cretu, S., 2008, “An Improved Incremental Model to Analyse Elastic - Plastic Concentrated Contacts – The Finite Element Analysis and Validation,” Acta Tribologica, Vol. 16, ISSN 1220-8434.

  21. Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press.