ANALYSIS OF THE TRIBOLOGICAL ROLE
OF LIPID MULTILAYERS IN BIOLOGICAL LUBRIFICATION
A-M. TRUNFIO1,2
ana-maria.sfarghiu@insa-lyon.fr
Y.
BERTHIER1
M.-H. MEURISSE1
J.-P. RIEU2
1
Laboratoire de
Mécanique des Contacts et des Structures, Institut National
des Sciences Appliqué de Lyon, FRANCE
2 Laboratoire de
Physique de la Matière Condensée et
Nanostructures,Université Lyon 1; FRANCE
Abstract.
The aim of this work is to identify the role
of the lipid multilayers in controlling and reducing frictional
forces between the biomimetic cartilage surfaces. We have
incorporated the effect of lipid multilayers in a realistic ex-vivo
model capable of reproducing the mechanical and physicochemical
characteristics of the entire tribological triplet of the synovial
joint. This model reconstitutes the properties of the articular
cartilage using a manufactured convex lens in soft HEMA and of the
lipid multilayers of the synovial fluid structure using nanophysics
techniques. A home-made tribometer was used to measure the
tangential force at constant load (friction coefficient); changes in
the lipid structure were observed in-situ after long period of
friction with fluorescence microscopy. The results of this work show
that the DPPC lipid multilayers generated friction coefficients that
were small (0.002) and comparable to that found between cartilage
surfaces. This low friction stems from the localisation of sliding
accommodation in the layer of physiological solution trapped between
the two lipid bilayers. These results suggest that the tribological
role of the lipid bilayers is mainly physicochemical: it consists of
trapping thin layers of physiological solution capable of localising
sliding, making it possible to obtain a very low friction
coefficient. The results show that the destruction of lipidic
multilayers by oxidation (case of DOPC multilayers) and the
variation of mechanical properties by the reduction of pH increase
the friction coefficient.
Keywords:
lipid multilayers, synovial fluid, DPPC, biolubrication
References
-
Reynolds, O.,
1886, Philosophical Transactions of the Royal Society of
London, 177, p. 157.
-
Dowson, D.,
1967, Proceedings of the Institution of Mechanical Engineers,
181, p. 45.
-
Jin,
Z. M., Dowson, D.,
1996, Elastohydrodynamics (Eds D. Dowson et al.) in Elsevier
Science B.V., Amsterdam.
-
Murukami, T.,
1990, JSME Int. J., Ser. III, 33(4), p. 465.
-
Schmidt T.A.,
2007, ARTHRITIS & RHEUMATISM, 56(3), p. 882.
-
Charnley, J.,
1959, Institution of Mechanical Engineers Symposium on
Biomechanics, 17, p.12.
-
McCutchen, C. W.,
1962, Wear, 5, p.1.
-
Schmidt, T.A., Sah, R.L.,
2007, OsteoArthritis and Cartilage, 15, p. 35.
-
Swann, D.A., Radin, E.L.,
1972, The Journal of biological chemistry, 247(25), p.
8069-8073.
-
Swann, D.A.,
1981,
Arthritis and Rheumatism, 24, p. 22-30.
-
Swann, D.A., Silver, F.H., Slayter, H.S., Stafford, W., Shore,
E.,
1985, Biochem. J., 225, p. 195-201.
-
Klein, J.,
2006, Proc.IMechE Part J: J. Engineering Tribology, 220
-
Raviv, U. Giasson, S. Kampf, N. Gohy, J.-F. Jérôme, R.
Klein, J.
2003,
Nature, 425, p.163-165.
-
Zappone, B.,
Ruths, M.,
Greene, G.W.,
Jay, G.D,
Israelachvili,
J.N.,
2007,
Biophysical
Journal.
-
Gleghorn, J.P.,
2007, European Cells and Materials, 14, p. 20-29.
-
Levick, J.R.,
1983, “Synovial Fluid Dynamics: The Regulation of Volume and
Pressure,” ch. 5. In Edited by Maraudas A et Holborow EJ,
Studies in Joint Disease 2. London: Pitman, p. 153-240.
-
Rhee,
D.K., 2005, The Journal of Clinical Investigation,
115(3), p. 622–631.
-
Schvartz, I.,
1999,
The International Journal of Biochemistry & Cell Biology,
31, p. 539-544.
-
Tolosano, E., Altruda, F. ,
2002, DNA and cell biology, 21(4), p. 297-306.
-
Hills, B.A., Butler, B.D.
1984, Ann Rheum Dis., 48, p. 51-58.
-
Schwarz, I.M., Hills, B.A.,
1998, British Journal of Rheumatology, 37, p. 21-26.
-
Higaki, H., Murakami, T., Nakanishi, Y.,
1997, JSME Int. J., 40, p. 776-81.
-
Spencer, N.D.,
2002, “Boundary
and Mixed Lubrication: Science and Application,” (Proceed.
28th Leeds-Lyon Symp.),
Trib. Ser., 40, pp 61-66.
-
Hills, B.A.,
1989, J. Rheumatol, 16, p. 82-91.
-
Sarma, A.V., Powell, L.G., LaBrege, M.,
2001, Journal of Orthopaedic Research, 19, p. 671-676.
-
Cong, P., Nanao, H., Igari, T., Mori, S.,
2000, Applied Surface Science, 167, p. 152–159.
-
Yoshizawa, H., Chen, Y-L.
and Israelachvili, J., 1993, Wear, 168, p.
161-166.
-
Briscoe, W.H., Klein, J.,
2006, Nature Letters, 444(9), p.192-194.
-
Higaki, H,
Murakami, T,
1998,
Proc Inst
Mech Eng
[H]. 212(5), p. 337-46.
-
Trunfio-Sfarghiu, A.M.,
Berthier,
Y.,
Meurisse,
M.H., Rieu, J.P.,
2007, Tribol Int., 40, p. 1500-1515.
-
Bayerl, T.M., Bloom, M.,
1990,
Biophys J., 58, p. 357-362.
-
Richter, P.R., Berat, R., Brisson, R.A.,
2006, Langmuir, 22, p. 3497-3505.
-
Perie, D., Hobatho, M.C.,
1998, Clinic Biomech, 13, p. 394-405.
-
Gale, L.R., Coller, R., Hargreaves, D.J., Hills, B.A.,
Crawford R., 2007, Tribol Int. 40, p. 601-611.
-
Klein, J.,
2004, J. Phys.: Condens. Matter., 16, p. S5437–S5448.
-
Klein, J.,
2006, Proc. IMechE Part J: J. Engineering Tribology, 220,
p. 691-710.
-
Raviv, U., Klein, J.,
2002, Fluidity of bound hydration layers, Science, 297, p.
1540-1543.
-
Berthier, Y,
2001, Background on friction and wear, Chap 8. In Lemaître J.
Handbook of materials behavior models. San Diego, CA:
Academic Press, p.676 -699.
-
Coban, O., Popov, J., Burger, M., Vobornik, D., Johnston, L.,
“Transition from Nanodomains to Microdomains Induced by Exposure
of Lipid Monolayers to Air,” Biophysical Journal (2007),
92:2842-2853
-
Ostalowska, A.,
2005, Osteoarthritis and cartilage, p. 1063-4584.
-
Ballantine, G.C., Stachowiak, G.W.,
2002, Wear, 253, p. 385–393.
-
Han, C.,
2007, Prostaglandins Other Lipid Mediat., 83(3), p.
225-30.
-
Cross, B.,
Crassous, J., 2004, Eur. Phys. J. E., 14, p.
249-257.
-
Pasquali-Ronchetti, I.,
1997, Journal of structural biology, 120, p. 1–10.
-
Watanabe, M.,
2000, The Clinical Electron Microscopy Society of Japan,
33, p. 16-24.
|