Editorial Board

Instructions for Authors

Review Process













1 Laboratoire de Mécanique des Contacts et des Structures, Institut National des Sciences Appliqué de Lyon, FRANCE

2 Laboratoire de Physique de la Matière Condensée et Nanostructures,Université Lyon 1; FRANCE


Abstract. The aim of this work is to identify the role of the lipid multilayers in controlling and reducing frictional forces between the biomimetic cartilage surfaces. We have incorporated the effect of lipid multilayers in a realistic ex-vivo model capable of reproducing the mechanical and physicochemical characteristics of the entire tribological triplet of the synovial joint. This model reconstitutes the properties of the articular cartilage using a manufactured convex lens in soft HEMA and of the lipid multilayers of the synovial fluid structure using nanophysics techniques. A home-made tribometer was used to measure the tangential force at constant load (friction coefficient); changes in the lipid structure were observed in-situ after long period of friction with fluorescence microscopy. The results of this work show that the DPPC lipid multilayers generated friction coefficients that were small (0.002) and comparable to that found between cartilage surfaces. This low friction stems from the localisation of sliding accommodation in the layer of physiological solution trapped between the two lipid bilayers. These results suggest that the tribological role of the lipid bilayers is mainly physicochemical: it consists of trapping thin layers of physiological solution capable of localising sliding, making it possible to obtain a very low friction coefficient. The results show that the destruction of lipidic multilayers by oxidation (case of DOPC multilayers) and the variation of mechanical properties by the reduction of pH increase the friction coefficient.



Keywords: lipid multilayers, synovial fluid, DPPC, biolubrication




  1. Reynolds, O., 1886, Philosophical Transactions of the Royal Society of London, 177, p. 157.

  2. Dowson, D., 1967, Proceedings of the Institution of Mechanical Engineers, 181, p. 45.

  3. Jin, Z. M., Dowson, D., 1996, Elastohydrodynamics (Eds D. Dowson et al.) in Elsevier Science B.V., Amsterdam.

  4. Murukami, T., 1990, JSME Int. J., Ser. III, 33(4), p. 465.

  5. Schmidt T.A., 2007, ARTHRITIS & RHEUMATISM, 56(3), p. 882.

  6. Charnley, J., 1959, Institution of Mechanical Engineers Symposium on Biomechanics, 17, p.12.

  7. McCutchen, C. W., 1962, Wear, 5, p.1.

  8. Schmidt, T.A., Sah, R.L., 2007, OsteoArthritis and Cartilage, 15, p. 35.

  9. Swann, D.A., Radin, E.L., 1972, The Journal of biological chemistry, 247(25), p. 8069-8073.

  10. Swann, D.A., 1981, Arthritis and Rheumatism, 24, p. 22-30.

  11. Swann, D.A., Silver, F.H., Slayter, H.S., Stafford, W., Shore, E., 1985, Biochem. J., 225, p. 195-201.

  12. Klein, J., 2006, Proc.IMechE Part J: J. Engineering Tribology, 220

  13. Raviv, U.  Giasson, S.  Kampf, N.  Gohy, J.-F. Jérôme, R.  Klein, J. 2003, Nature, 425, p.163-165.

  14. Zappone, B., Ruths, M., Greene, G.W., Jay, G.D, Israelachvili, J.N., 2007, Biophysical Journal.

  15. Gleghorn, J.P., 2007, European Cells and Materials, 14, p. 20-29.

  16. Levick, J.R., 1983, “Synovial Fluid Dynamics: The Regulation of Volume and Pressure,” ch. 5. In Edited by Maraudas A et Holborow EJ, Studies in Joint Disease 2. London: Pitman, p. 153-240.

  17. Rhee, D.K., 2005, The Journal of Clinical Investigation, 115(3), p. 622–631.

  18. Schvartz, I., 1999, The International Journal of Biochemistry & Cell Biology, 31, p. 539-544.

  19. Tolosano, E., Altruda, F. , 2002, DNA and cell biology, 21(4), p. 297-306.

  20. Hills, B.A., Butler, B.D. 1984, Ann Rheum Dis., 48, p. 51-58.

  21. Schwarz, I.M., Hills, B.A., 1998, British Journal of Rheumatology, 37, p. 21-26.

  22. Higaki, H., Murakami, T., Nakanishi, Y., 1997, JSME Int. J., 40, p. 776-81.

  23. Spencer, N.D., 2002, “Boundary and Mixed Lubrication: Science and Application,” (Proceed. 28th Leeds-Lyon Symp.), Trib. Ser., 40, pp 61-66.

  24. Hills, B.A., 1989, J. Rheumatol, 16, p. 82-91.

  25. Sarma, A.V., Powell, L.G., LaBrege, M., 2001, Journal of Orthopaedic Research, 19, p. 671-676.

  26. Cong, P., Nanao, H., Igari, T., Mori, S., 2000, Applied Surface Science, 167, p. 152–159.

  27. Yoshizawa, H., Chen, Y-L. and Israelachvili, J., 1993, Wear, 168, p. 161-166.

  28. Briscoe, W.H., Klein, J., 2006, Nature Letters, 444(9), p.192-194.

  29. Higaki, H, Murakami, T, 1998, Proc Inst Mech Eng [H]. 212(5), p. 337-46.

  30. Trunfio-Sfarghiu, A.M., Berthier, Y., Meurisse, M.H., Rieu, J.P., 2007, Tribol Int., 40, p. 1500-1515.

  31. Bayerl, T.M., Bloom, M., 1990, Biophys J., 58, p. 357-362.

  32. Richter, P.R., Berat, R., Brisson, R.A., 2006, Langmuir, 22, p. 3497-3505.

  33. Perie, D., Hobatho, M.C., 1998, Clinic Biomech, 13, p. 394-405.

  34. Gale, L.R., Coller, R., Hargreaves, D.J., Hills, B.A., Crawford R., 2007, Tribol Int.  40, p. 601-611.

  35. Klein, J., 2004, J. Phys.: Condens. Matter., 16, p. S5437–S5448.

  36. Klein, J., 2006, Proc. IMechE Part J: J. Engineering Tribology, 220, p. 691-710.

  37. Raviv, U., Klein, J., 2002, Fluidity of bound hydration layers, Science, 297, p. 1540-1543.

  38. Berthier, Y, 2001, Background on friction and wear, Chap 8. In Lemaître J. Handbook of materials behavior models. San Diego, CA: Academic Press, p.676 -699.

  39. Coban, O., Popov, J., Burger, M., Vobornik, D., Johnston, L., “Transition from Nanodomains to Microdomains Induced by Exposure of Lipid Monolayers to Air,” Biophysical Journal (2007), 92:2842-2853

  40. Ostalowska, A., 2005, Osteoarthritis and cartilage, p. 1063-4584.

  41. Ballantine, G.C., Stachowiak, G.W., 2002, Wear, 253, p. 385–393.

  42. Han, C., 2007, Prostaglandins Other Lipid Mediat., 83(3), p. 225-30.

  43. Cross, B., Crassous, J., 2004, Eur. Phys. J. E., 14, p. 249-257.

  44. Pasquali-Ronchetti, I., 1997, Journal of structural biology, 120, p. 1–10.

  45. Watanabe, M., 2000, The Clinical Electron Microscopy Society of Japan, 33, p. 16-24.